Duality and Normal Parts of Operator Modules
نویسنده
چکیده
For an operator bimodule X over von Neumann algebras A ⊆ B(H) and B ⊆ B(K), the space of all completely bounded A, B-bimodule maps from X into B(K,H), is the bimodule dual of X. Basic duality theory is developed with a particular attention to the Haagerup tensor product over von Neumann algebras. To X a normal operator bimodule Xn is associated so that completely bounded A, B-bimodule maps from X into normal operator bimodules factorize uniquely through Xn. A construction of Xn in terms of biduals of X, A and B is presented. Various operator bimodule structures are considered on a Banach bimodule admitting a normal such structure.
منابع مشابه
On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...
متن کاملApproximate Duals of $g$-frames and Fusion Frames in Hilbert $C^ast-$modules
In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and ...
متن کاملG-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules
Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...
متن کاملThe duality between vertex operator algebras and coalgebras, modules and comodules
We construct an equivalence between the categories of vertex operator algebras and vertex operator coalgebras. We then investigate to what degree weak modules, generalized modules and ordinary modules carry corresponding comodule structures, as well as when various comodules carry module structure.
متن کاملThe solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules
In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.
متن کامل